IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Pair creation in the adiabatic limit: a solvable example

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 223
(http://iopscience.iop.org/0305-4470/28/1/024)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:28

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 28 (1995) 223-230. Printed in the UK

Pair creation in the adiabatic limit: a solvable example
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Abstract, A strictly positive lower bound is derived for the average number of chiral
fermion/antifermion pairs which are created from the two-dimensional Minkowski space vacunm
by an infinitely differentiable external potential of compact support in the adiabatic Iimit.

1. Spontaneous pair creation

The idea that sufficiently strong static electric fields might cause the creation of electron
positron pairs originated already in the sarly days of quantum field theory [11. In particular,
extensive case studies of the phenomenon have been made in order to understand the
positron emission spectra of heavy ion collisions (for two complementary reviews, see
[2,3]). Nevertheless, in the pursuit of a more mathematically rigorous development of the
theory, the idea of pair creation by static fields has been rejected repeatedly [4-6]. In
an attempt to reconcile the two contradictory quantization procedures, a sufficiently subtle
notion of ‘spontaneous’ pair creation has been devised by Nenciu [7], which, in a slightly
modified way, then finally led to the insight that the phenomenon, if understood properly,
indeed exists, at least within the realm of mathematical facts [8].

Nenciu’s result for spontaneocus pair creation relies on a time-dependent potential that is
taned by a ‘switching factor’ @{t) which has at least one discontinuity, This discontinuity,
however, is not smoothed out in the adiabatic limit, where ¢(¢) is replaced by ¢(et) and
the limit € — zero is considered. Rather, the discontinuity is shifted to infinity after the
[imits inherent in the scattering observables are performed. Thus, in the adiabatic limit, the
potential does not converge uniformly to a static external field such that the production of
particles appears less surprising.

In this work, the problem of pair creation in the adiabatic limit is investigated within the
framework of massless fermions in two-dimensional Minkowski spacetime. The fermions
are exposed to a smooth external potential. The simplicity of the model allows for an
extremely explicit treatment of the relevant quantities, a fact that has recently been made
use of by several authors [9-13]. Our finding here is that, in the limit of increasingly slower
tuning, the expected number of particles created does not converge to zero. Yet this fact is
still not what might be considered as genuine spontaneous particle creation in its original
intuitive sense, since these particles’ energy is found to tend to zero in the adiabatic limit.
Therefore, in this limit, these particles escape detection. Thus, spontancous pair creation
remains a puzzling problem. '
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224 P Horak and G Griibl
2. Right-moving zero-mass fermions in 2D spacetime

The zero-mass Dirac equation in two-dimensional (2D) Minkowski spacetime with external
potential Aqdx® + A, dx! leaves the two ‘chirality’ components of the Dirac field, i.e.
the right-going and the left-going component, decoupled from each other. The right-going
component obeys the evolution equation [12]

i%f{xo,xl) = {—i%—A(xo,x')} Fi(x® xh. @.1)

Here, A:= Ag+ A; is assumed to possess partial derivatives of any order and compact
support, i.e. A belongs to C(R:R). (Let T be such that A(x%, -) = 0 for all [x%] > T.)
The initial-value problem to equation (2.1) defines the unitary dynamics u(x°, A): £(0, ) —
F(x°, ) on the space H:= L?(R: C) with scalar product (f, g):= fpdx f(x)*g(x).

The scattering operator S of u(-, A) with respect 1o free dynamics is defined by

S= u(x, 0y u(x®, Au(—x°, Ay u(—x°,0) (2.2)

where x¥ > T. S is given by S = exp(is(Q)). Here, Q is the multiplication operator
(@f)(x):=xf(x) in H and 5 € CP(R:R) is defined by s(x): = fR dEA(E, £+ x).

A second quantization of the model is specified by choosing an orthogonal projection
P on H. This works according to the following construction: the projection P induces
a quasifree state wp on the CAR (canonical anticommutation relations)-algebra il over the
Hilbert space H. If a: H < U denotes an antilinear injection of H inte i, such that the
anticommutation relations hold, then wp reads

wpla(fn) .. .a(fida(g)”...a(gn)") = Sun det((f7, Pg;ll.

The state wp induces the GNS-representation ITp of 4. The elements of &, which belong
to the image a(H) of H under the injection a, define the Schridinger picture fermionic
quantum field via the relation ¥p(f): = Hp(a(f)). Finally, the second quantized dynamics
is obtained by defining the Heisenberg picture quantum field Wp[x®, £1: = Wp(u(x?, A)* F).

Projection P is determined by the condition that, at times prior to the external field’s
influence, the Heisenberg picture field equals the free field in the physical (positive-energy)
representation, ie. the field W, [x%, Fl:= W [ F]. Thus, Wplx%, 1 = Wi x, f1
must hold for all x° < ~T and f € M. Here ho:= —izl; and Py:= O(hg). Therefore,
the relation P = Wi Py Wy, follows, where Wi = a(—x°, A)*ei""hﬂ with x° > T is the
incoming wave operator [12].

Since for all times x° > T, the potential A(x®,-) vanishes, the outgoing asymptotic
field Wy [x°, f1 = Weul0, e £] can be read from the Heisenberg picture field according
to W [0, 6% f1 = Wplu(xo, A)* f] for all x° > T and f € H. Thus, the outgoing field
is given by Wou[0, f] = ¥p[S*f] = W;l0, 5* f]. Here, § is the scattering operator of
equation (2.2).

A unitary scattering operator I'(5) of the second guantized model is defined (up to a
complex factor of modulus 1) by

L(S)Woul0, 1= Wil0, FIF(S) for all f € H. (2.3)

Such an intertwining operator indeed exists, since potential A is assumed to be of compact
support [12].
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The incoming particle number operator Nj, is defined as the generator of a one-parameter
group of Bogoljubov transformations by means of the following relations: for all real A,

exp{idNia}Win[0, fTexp{~iANix} = Win[0, explir(@ (ko) — @ (—ho))}f]

with (g, Ninf2in) = 0, where Qj, is the incoming vacuum vector. By replacing all the
suffixes “in’ in this condition by the suffix “out’, the outgoing particle number operator Ny
is defined. Obviously, the intertwining relation

C{S)Now = NuI'(S) 2.4)

holds. -

The quantity central to this work is the mean value of the number of outgoing particles
in the incoming vacuum state, i.e. the expected number of particles to be produced by the
external field if initially no particles are present:

Nouws: = (Qin, NowQ%n)- (2.5)

From the general “shift formula’ of second quantized charges (see, for example, [14] equation
34), the relation

Afout-= Tr{ Py S(id — Py)§*} + Tr{(id — Py) S Py §*} ' (2.6)

can be read off easily. The right-hand side of equation (2.6) is a sum of Hilbert-Schmidt
norms

Now = || PyS(id — Po)lifgs + 1| PoS*(id — Po) s 2.7)

Expressions of this type have been investigated by Hermaszewski and Streater [15]. In
close analogy to their treatment, the Hilbert-Schmidt norms may be computed in momentum
space. This yields (see, for example, [16], chapter 4.4):

_ 1 2
Now = 5 fR ak 1K | FLA) . 2.8)

Here f(x):=¢e"® — 1 and F{f}(k): = fp dx f(x)e ™ (/2.
The incoming second quantized Hamiltonian H;; induces the free time evolution of the
incoming asymptotic field. Thus, the following equation holds for all real x°

explix® Hn N5x [0, 7] exp{—ix®Hin) = Win[0, exp(ix®ho) F1.

Again, (Qip, Hin$in) = 0 holds. Analogous expressions define H,,;. The expectation valu_e
of the outgoing energy in the incoming vacuum state, i.e. the energy transferred to the
fermionic vacuum state by the external field

Ho\n: = (Qim Ho\ngi:\) (29}

may be computed in close analogy to Mgy (see, for example, [16], l:hebrem 4.4},
Hout = f dx (' (x))2/ (4). (2.10)
3

Here s' denotes the derivative of s.



226 P Horak and G Griibl
3. Particle creation in the adiabatic limit

In what follows, potential A in equation (2.1) will be assumed to belong to a one-parameter
family of potentials of the type

At x):= Det)V(x). 3.1)

Here, ¢ is assumed to be positive real. @ € Cg°(R:[0, 1]} is supposed to be a so-called
tuning factor, i.e. ®:R — [0, 1] obeys (0} = 1 and its first derivative &' obeys &'(t) = 0
for r €0 and ®'(r) < 0 for ¢t 2 0. The constants $y:= fRdt O(f) and y: = fR de ®(t)|z]
will occur repeatedly. The non-zero function ¥V & C5°(R: [0, o¢)) is supposed to have its
support confined to the interval [—r, r] for some positive real r. Associated with V are the
constants Vi:= fmdx V{x) > 0and Vo:= fRdx V(x)|x]- If all these conditions are met,
{A:0 < € < oo} is called a tuned potential.

The main result of this work is the existence of a strictly positive lower bound to the
average number of outgoing particles in the adiabatic limit of a tuned potential. This is
made precise by the following theorem.

Theorem 3.1. Let {A:Q < € < 00} be a tuned potential as described by equation (3.1). Let
NE, be the expected number of outgoing particles, which is created by A, in the incoming
vacuum state as defined by equation (2.5). There then exist constants n > 0 and ¢ > 0 such

that NS, = ¢ holds for all € < 7.

The proof of theorem 3.1 relies on several general properties of the first quantized
scattering operator which are summarized in the following two lemmas: the first simply
lists some obvious properties, the second will need an elaborate proof.

Lemma 3.2. Let s¢R — R be the mapping x — se(x):i= [pdf A&+ x) =
frdE (e&)V (£ + x). Then, the following hold:

(i) foralle>0:0<Ks5. < Vs

(i) forall x € R: ims.(x) =V, fore — ;

(1ii) for all € > O: lims.(x} = 0 for x — Zo0; and

@(iv) forall € > 0: [ dxs.(x) = P;Vy/e.

Lemma 3.3. Let f.:R — C denote the function x +— expfis,(x)}} — 1 and let f‘; be its
Fourier transform, as in equation (2.8). There then exist positive real constants ¢, ¢z, ¢3,
¢4, €p and a real constant ¢s such that:

(i) foralle >0 |f| <cife;

(i) foralle = (: | f;’[ < (ca/€) + (c3/€%), where f':’ is the first derivative of function f;;
(iii) for all € with 0 < € < &p: £ (O] = €5 + ca/e.

Proof of lemma 3.3.  All integrations in this proof, if not indicated otherwise, extend from
—0Q o 4-C0.

() V2r|fe k) = [ f dx (expfise (x)} — 1) exp{—ikx}

< fdx]exp{ise(x)} - 1].
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Since s (x} is non-negative, the estimate [exp{ise(x)} — 1] € sc(x) holds. Thus, the k-
independent npper bound /27 [ f (X} < ©,V1/¢ =i+/2me; /e follows due to part (iv) of
lemma 3.2.

(ii) V2| fik)] = l f dx fe(x)(~ix) exp{—ikx}

< [ axexplise () — 11 sl e
< f dr s, ()]

= [axial [ ez oetve +0
=fd§ qn(eg}fdx IV E +x)
=[d$¢(e-§)fdxlx — V()

< f dE ®(e8) f dx (jx] + EDV (%)
= [@ormrem

= (V2®1/€) + (ViDa/e?).

(i) IR RO = f dx £x)

= Refdxf(x)

= fdx (cos(s¢(x)) — 1)‘

fdx {1 —cos3.(x))

B{e)
= f dx (1 — coss.(x)).
ale)

Now a proper choice of the finite interval [a(e€), {e)] has to be devised. Since & is
continuous and increases monotonically from ¢ to 1 on the negative half line, there
exist constants ¢y < ag < 0 such that 0 < Vi®P(oy) € Vi®P(x) < 2w holds, Let
é:= (o — o)/2r) > 0, a(e):= —=2 + r and b(e):= —& —r. Then, for all
€ < €, r < ale) < b(e) holds. The inequality ¢ < ¢ will be assumed for the
rest of this proof. For x € [a(e), b(€}], the value s.(x)} can be written by the mean-
value theorem of integration as s.(x) = ®(e(v ~ x))V} with some v € [—r,r]. Thus,
gije=~—r—bg)<—r—xguv—x £r—x <r—ale) =ay/e < 0 holds, which in turn,
by the monotony of ¢ on (—co, (), implies

Do) § Ple(—r —x)) < Pe(v—x)) = 5. (x})/ Vi < P(er —x)) < P(en).
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Thus, the estimate V1 P(a) € s¢(x) € V1 P(aa) < 27 holds for all x € [a(e), b(e)]. Now,

since cos takes its maximum on a subinterval of [0, 2x] at one of the two endpoints, the
estimate

cos(se(x)) < = max{cos(Vi (a1 )), cos(V1P{e2))} < 1

follows. Thus,
Ble)

N2 | f ()] > dx(1 — cos sc(x))

ale)

B{e)
> f de(1 = y)
ale)

=(1~7) (“26 —Zr)

holds. This proves part (iii) of lemma 3.3. O

Proof of theorem 3.]. In order to obtain a lower bound for N¢,, the intcgration over
R in NS, = = [gdklkl|fe(k)? is replaced by an integration over [0, uel: NG, >

€ dk k| f,(kK)|* with u > 0. The integrand is estimated by means of the mean-
valee theorem. The mapping: k = |f.(k)|* restricted to [0, we] obeys: |fi(&)|* =
| f @ + kL] 7 (W))? for some A with 0 < A < k. Thus

. - d - x = d -
FAGIERFAOIE k‘ (_fe (l)) FeG)* + fe(l)afe(l)*

> | Fe@ - Zk‘—*fe(l) FACS:

> (es -+ cafe)? = 2kl(eafe) + o/ N

The last estimate is due to lemma (3.3) and is valid for ali € < €.
Now

(] 1 pe ~ 2
NE > E;fo AEA)

1 e

> > 5 ) dk {k(cs + cafe)’ — 2k2((ca/€) + cs/eDer f€)

= -gm{[(c‘;lz) 2ucics /31 + eleacs — 2ucic2/3) + €*c2/2).

H p is chosen sufficiently small such that [(c4/2) — 2ucyc3f3] > 0, then there exists an
¢-domain (0, n) on which the above polynomial in ¢ is bounded from below by a positive
real number, which finally proves theorem (3.1). O
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4. Energy dissipation in the adiabatic limit

In this section, the average amount of energy which is transferred from the sources of the
external field to the fermionic system is studied. More precisely, the expected energy of
the outgoing particles in the incoming vacuum state is computed in the limit of adiabatic
tuning. It turns out that the energy of the outgoing particles tends to zero in this limit.

Theorem4.1. Let{A.:0 < ¢ < o0} be atuned potenual as in section 3, and let ¢, denote
the expected energy of the outgoing particles as in equation (2.9). Then lim A, = 0 holds
fore = 0. .

Proof.” In order to make use of the integral representation given by equation (2.10) for H¢ ,,
an estimate for |s;(x)| is needed. A sufficient estimate is obtained from the mean-value
theorem of integration: -

10 = 1= [ eEOVE+D)
- fn &= (eE —)VE)
= _efdg (e —xNV(E)

R

e f 8 &/ (6 — XV E)
= —e®'(e(v — 2NV

with some (x-dependent) v € [—r, r]. Thus, |si{x)] = eV7|P'(e{v = x})| holds with some
v € [—r, r]. From this equality, the support of |s.(x)| may be confined as follows.

(i} Since e(v — x) > e(—~r — x) and supp(¢’) C [T, T], we obtain P'(e(v —x)) =0
for all x with e{(—r — x) = T or equivalently for all x with x < —r — T /€.

(u) Similarly, the mequalxty e(v—2x) < e(r — x) yields ®'(e{v —x)) = 0 for all x with

zr+Tfe.

Due to (i) and (ii), the integration of |s/(x)|?, which represents ¢, may be restricted
to the x-interval —r — T/e € x < r + T/e. In this range, the estimate |P'(e(v — x})| <
p: = supf| D' (z)|:t € R} will be employed:

d., 2 2
o = G [ ax 10/ - it < S0+ 1700
47 ] n
Thus, H¢,, obeys HE,, < c1€ + cze2, which proves theorem 4.1, O
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