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Pair creation in the adiabatic limit: a solvable example 
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Innsbruck, Austria 

Received 5 September 1994 

Abstract. A strictly positive lower bound is derived for the average number of chiral 
fmiodmtifemion pairs which are created fmm the huo-dimensional Minkowski space vacuum 
by M infinitely differentiable extemal poten6aJ OF compact support in the adiabatic limit. 

1. Spontaneous pair creation 

The idea that sufficiently strong static electric fields might cause the creation of electron 
positron pairs originated already in the early days of quantum field theory 111. In particular, 
extensive case studies of the phenomenon have been made in order to understand the 
positron emission spectra of heavy ion collisions (for two complementary reviews, see 
[2,3]). Nevertheless, in the pursuit of a more mathematically rigorous development of the 
theory, the idea of pair creation by static fields has been rejected repeatedly [4-6]. In 
an attempt to reconcile the two contradictory quantization procedures, a sufficiently subtle 
notion of ‘spontaneous’ pair creation has been devised by Nenciu [7], which, in a slightly 
modified way, then finally led to the insight that the phenomenon, if understood properly, 
indeed exists, at least within the realm of mathematical facts [SI. 

Nenciu’s result for spontaneous pair creation relies on a time-dependent potential that is 
tuned by a ‘switching factor’ p(t) which has at least one discontinuity. This discontinuity, 
however, is not smoothed out in the adiabatic limit, where p(t) is replaced by p(~ t )  and 
the limit E + zero is considered. Rather, the discontinuity is shifted to infinity after the 
limits inherent in the scattering observables are performed. Thus, in the adiabatic limit, the 
potential does not converge uniformly to a static extemal field such that the production of 
particles appears less surprising. 

In this work, the problem of pair creation in the adiabatic limit is investigated within the 
framework of massless fermions in twodimensional Minkowski spacetime. The fermions 
are exposed to a smooth external potential. The simplicity of the model allows for an 
extremely explicit treatment of the relevant quantities, a fact that has recently been made 
use of by several authors [9-131. Our finding here is that, in the limit of increasingly slower 
tuning, the expected number of particles created does not converge to zero. Yet this fact is 
still not what might be considered as genuine spontaneous particle creation in its original 
intuitive sense, since these particles’ energy is found to tend to zero in the adiabatic limit. 
Therefore, in this limit, these particles escape detection. Thus, spontaneous pair creation 
remains a puzzling problem. 
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2. Right-moving zero-mass fermions in 2D spacetime 

The zero-mass Dirac equation in two-dimensional (2D) Minkowski spacetime with external 
potential Aodxo  + A, dx] leaves the two 'chirality' components of the Dm field, i.e. 
the right-going and the left-going component, decoupled from each other. The right-going 
component obeys the evolution equation [12] 
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Here, A: = A0 + AI  is assumed to possess partial derivatives of any order and compact 
support, i.e. A belongs to C,"*: E+). (Let T be such that A(xo. .) = 0 for all lxol > T.) 
The initial-value problem to equation (2.1) defines the unitary dynamics u(xO, A): f(0, .) H 

f ( x o ,  .) on the space 'H: = L*(HB:C) with scalar product (f, g): = iR& f ( x ) * g ( x ) .  
The scattering operator S of U ( . ,  A) with respect to free dynamics is defined by 

S: = u(x', 0)"u(xo, A)u(-x0, A)"u(-x0, 0) (2.2) 

where xo 2 T .  S is given by S = exp(is(Q)). Here, Q is the multiplication operator 
(Qf)(x): = x f ( x )  in 3t and s E CF(R:R) is defined by s(x):  = &d$A($, $ + x ) .  

A second quantization of the model is specified by choosing an orthogonal projection 
P on 'H. This works according to the following construction: the 'projection P induces 
a quasifree state o p  on the CAR (canonical anticommutation relations)-algebra .U over the 
Hilbert space 'H. If a:  H 9 fl denotes an antilinear injection of 'H into U, such that the 
anticommutation relations hold, then op reads 

w p ( a ( f ) .  .. a ( ~ ) a ( g l ) *  . . . U  (g,)*) =&,det[(fl.Pgj)J. 

The state up induces the ms-representation i l p  of U The elements of U, which belong 
to the image a(%) of H under the injection a ,  define the Schrodinger picture fermionic 
quantum field via the relation q J p ( f ) :  = l ' Ip (a( f ) ) .  Finally, the second quantized dynamics 
is obtained by defining the Heisenberg picture quantum field Y p [ x o ,  f ] :  = Yp(u(xo, A)*f) .  

Projection P is determined by the condition that, at times prior to the external field's 
influence, the Heisenberg picture field equals the free field in the physical (positive-energy) 
representation, i.e. the field Yin[xo, fl:= Yfi[eihoxofl. Thus, Y p [ x o . f l  = Qin[xo, f l  
must hold for all xo < -T and f E 7.1. Here ho: = -i& and PO: = O(h0). Therefore, 
the relation P = Wi.PoW,; follows, where win:= u(-xo,A)*eUoho with xo T is the 
incoming wave operator [12]. 

Since for all times xo T, the potential A(xo, .) vanishes, the outgoing asymptotic 
field YOu,,,,[xobf] = Yout[O, emukOf] can be read from the Heisenberg picture field according 
to YO,,[O, elx 'Of] = Yp[u(xo, Ayfl for all xo 2 T and f E H. Thus, the outgoing field 
is given by YoU,[O, f ]  = Yp,[S*f] = Yi,[O, S*f]. Here, S is the scattering operator of 
equation (2.2). 

A unitary scattering operator r ( S )  of the second quantized model is defined (up to a 
complex factor of modulus 1) by 

r(s)Y,.,[o, f 1 =  Y ~ O ,  f i r ( s )  for an f E E. (2.3) 

Such an intertwining operator indeed exists, since potential A is assumed to be of compact 
support [12]. 
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The incoming particle number operator Ni, is defined as the generator of a one-parameter 
group of Bogoljubov transformations by means of the following relations: for all real X, 

exp{ihNiii.lYi,[O. fIexp{-ihNin1 = YiJO, expIih(O(ho) - O(-ho))}fl 

with (Ch, Ni&) = 0, where Qi, is the incoming vacuum vector. By replacing all the 
suffixes ‘in’ in this condition by the suffix ‘out’, the outgoing particle number operator N,, 
is defined. Obviously, the intertwining relation 

r(S)Nout = Ninr(S) (2.4) 

holds. 
The quantity central to this work is the mean value of the number of outgoing particles 

in the incoming vacuum state, i.e. the expected number of particles to be produced by the 
external field if initially no particles are present: 

&ut:= ( Q i n ,  ”&in) .  (2.5) 

From the general ‘shift formula’ of second quantized charges (see, for example, [ 141 equation 
34), the relation 

No,, = Tr{PoS(id -Po)S*} + Tr{(id-Po)SPoS*] (2.6) 

can be read off easily. The right-hand side of equation (2.6) is a sum of Hilbert-Schmidt 
norms 

N,, = l l P o ~ W - P ~ ) l l ~ ~  + I I ~ o ~ * ( i d - - P ~ ) l l ~ ~ .  (2.7) 

Expressions of this type have been investigated by Hermaszewski and Streater [15]. In 
close analogy to their treatment, the HilbertSchmidt norms may be computed in momentum 
space. This yields (see, for example, [16], chapter 4.4): 

‘ 

Here f ( x ) :  = eLCx) - 1 and F { f ] ( k ) :  = 

incoming asymptotic field. Thus, the following equation holds for all real xo 

dr f(x)e-ikx/&. 
The incoming second quantized Hamiltonian Hin induces the free time evolution of the 

exp{ixoHi.}Yi,[O. f] exp{-irOHi.) = %[O, exp(ixOhojfl. 

Again, (ain, = 0 holds. Analogous expressions define H,,,. The expectation value 
of the outgoing energy in the incoming vacuum state, i.e. the energy transferred to the 
fermionic vacuum state by the external field 

‘&ut: = (Q-iD, Hont%J (2.9) 

may be computed in close analogy to No,, (see, for example, [16], theorem 4.4). 

‘&t = L d x  (~’(x))*/(4~). 

Here s’ denotes the derivative of s. 

(2.10) 
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3. Particle creation in the adiabatic limit 

In what follows, potential A in equation (2.1) will be assumed to belong to a one-parameter 
family of potentials of the type 
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A , ( f , x ) : =  @(Ef)V(x) .  (3.1) 

Here, E is assumed to be positive real. @ E Cr(R 10, I]) is supposed to be a so-called 
tuning factor, i.e. @:Et + [0,1] obeys @(O) = 1 and its first derivative @’ obeys @‘(t)  > 0 
for f < 0 and @‘(t) < 0 for t > 0. The constants @ I :  = JRdt @ ( t )  and @z: = /, dt @(t)ltl 
will occur repeatedly. The non-zero function V E CO”@: [O, m)) is supposed to have its 
support confined to the interval [-r, r ]  for some positive real r .  Associated with V are the 
constants VI: = 1,d.x V ( x )  > 0 and VZ:= /,dr V(x)lxl.  If all these conditions are met, 
(A,: 0 c E c 00) is called a tuned potential. 

The main result of this work is the existence of a strictly positive lower bound to the 
average number of outgoing particles in the adiabatic limit of a tuned potential. This is 
made precise by the following theorem. 

Theorem3.1. Let (A,:O c 6 < m} be a tuned potential as described by equation (3.1). Let 
A& be the expected number of outgoing particles, which is created by A, in the incoming 
vacuum state as defined by equation (2.5). There then exist constants v > 0 and c > 0 such 
that N& > c holds for all E c v. 

The proof of theorem 3.1 relies on several general properties of the first quantized 
scattering operator which are summarized in the following two lemmas: the first simply 
lists some obvious properties, the second will need an elaborate proof. 

Lemma 3.2. Let s,:R -+ Et be the mapping x H s6(x):= IRGAc(f,t + x )  = 
JRdf @ ( ~ f ) V ( t  +n). Then, the following hold 
(i) for all E > 0: 0 < s( < V I ;  
(ii) for all x E R lims,(x) = VI for E + 0; 
(iii) for all E > 0 lims,(x) = 0 for x + fco; and 
(iv) f o r a l l E > 0  / , d r s , ( x ) = @ ~ V ~ / e .  

Lemma 3.3. be its 
Fourier transform, as in equation (2.8). There then exist positive real constants CI, CZ. c3, 
cd, EO and a real constant cs such that: 
(i) for a11 6 > 0: 4 C ~ / E ;  

(ii) for all E > 0: I t 1  < ( C Z / E )  + ( c ~ / E ’ ) ,  where 
(iii) for all E with 0 c E 

Proof of lemma 3.3. All integrations in this proof, if not indicated otherwise, extend from 
-03 to +m. 

’ 

Let fc: R + C denote the function x H exp{is,(x)] - 1 and let 

is the first derivative of function 8;  
€0: Ix(0)l > cs + c.+/E. 



(iii) 

= 1 / dx (cos(s,(x)) - 1)1 

= / dx (1 - cos sc(x))  

Now a proper choice of the finite intervat [a(€), b ( ~ ) ]  has to be devised. Since Q, is 
continuous and increases monotonically from 0 to 1 on *e negative half line, there 
exist constan- a1 < 0 1 ~  < 0 such that 0 < V1Q,(al) < V1@(01*) < 2n holds. Let 
E O : =  (012 - al)/(2r) r 0,  a(€) := -: + r and b ( ~ ) : =  -$ - r .  Then, for all 
6 < €0, r < a ( € )  < b ( ~ )  holds. The inequality E < EO will be assumed for the 
rest of this proof. For x E [a(€), b ( ~ ) ] ,  the value & ( x )  can be written by the mean- 
value theorem of integration as s < ( ~ )  = @(€(U - x ) ) V ,  with some U E [-r, r ] .  Thus, 
all6 = - r -b (c )  < -r - x  ( U - x  ( r  - x  < r  -a(€)  = 0 1 2 / ~  c 0 holds, which in turn, 
by the monotony of Q on (-m,O), implies 

(P(011) 6 @ ( c ( - r - x ) )  < O ( E ( U - X ) )  =s6(x) /V,  Q @(c(r - x ) )  < Q,((Yz). 
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Thus, the estimate V,O(rq) < s,(x) < &@(or,) < 2~ holds for all x E [ a ( € ) ,  b(c)]. Now, 
since cos takes its maximum on a subinterval of [0,2z] at one of the two endpoints, the 
estimate 
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cos(s<(x)) < y : =  max[cos(V~O(or,)),cos(V~O(or~))] < 1 

follows. Thus, 

holds. This proves part (iii) of lemma 3.3. 0 

Proof of theorem 3.1. In order to obtain a lower bound for JV&, the integration over 
R in M& = &lRdklkl  IA(k)lz is replaced by an integration over [ O , ~ E ] : J V ~ ~ ~  2 
&j,”’dkklf;(k)12 with I(. > 0. The integrand is estimated by means of the mean- 
value theorem. The mapping: k H If;(k)lz restricted to [O,I ( .LE]  obeys: 1f;(k)I2 = 
If;(0)12 + kil&(h))12 for some h with 0 c h < k. Thus 

The last estimate is due to lemma (3.3) and is valid for all E e € 0 .  

Now 

dk { ~ ( C S  + c ~ / E ) ’  - 2k2((c2/€) + C ~ / E ~ ) C I / E ]  

P2 = -{[(Ci/2) - 2PCiC3 /31+  EtC4C.9 - 2PCiC2/31 + E z C : / 2 ] .  
27C 

If I(. is chosen sufficiently small such that [(c,2/2) - 2pclc3/3] 0, then there exists an 
+domain ( 0 , ~ )  on which the above polynomial in E is bounded from below by a positive 

0 real number, which finally proves theorem (3.1). 
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4. Energy dissipation in the adiabatic limit 

In this section, the average amount of energy which is transferred from the sources of the 
external field to the fermionic system is studied. More precisely, the expected energy of 
the outgoing panicles in the incoming vacuum state is computed in the limit of adiabatic 
tuning. It turns out that the energy of the outgoing particles tends to zero in this limit. 

Theorem 4. I .  Let {A , :  0 < E < CO] be a tuned potential, as in section 3, and let NEuc denote 
the expected energy of the outgoing particles as in equation (2.9). Then lim‘?f$t’= 0 holds 
for E -+ 0. 

Proof. ’ In order to make use of the integral representation given by equation (2.10) for ‘HEnt, 
an estimate for Is:(x)l is needed. A sufficient estimate is obtained from the mean-value 
theorem of integration: 

= --E 

= - € @ ’ ( € ( U  - x) )V,  

d t  @’(4 - x ) ) V ( U  

with some (x-dependent) U E [-r, I ] .  Thus, Is:(x)l = EV, I@’(E(u - x))l holds with some 
U E [+, r ] .  From this equality, the support of Is:(x)l may be confined a s  follows. 

(i) Since E ( U  - x) 2 E(-T  - x) and supp(@’) c [-T, TI, we obtain @ ‘ ( € ( U  - x)) = 0 
for all x with E(-r - x) 2 T or equivalently for all x with x < -r - T / E .  

(ii) Similarly, the inequality E ( U  - x) < 6(r - x) yields @ ’ ( € ( U  - x)) = 0 for all x with 
x > r f TIE. 

Due to (i) and (ii), the inte-ption of Is:(x)lz, which represents Nlft may be restricted 
to the x-interval -r - TIE < x < r + T / E .  In this range, the estimate I @ ’ ( E ( u  - x))] < 
I: = sup[ l@’(t)l: t E B] will be employed 

Thus, ‘Hft obeys NEut < C I E  + C Z E ~ ,  which proves theorem 4.1. 
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